Properties of Dental Materials Based on Monomer-Free ORMOCER®s

H. Wolter¹, W. STORCH¹, S. NIQUE¹, R. MALETZ², T. NEUMANN², and M. DANEBROCK², ¹Fraunhofer-Institut für Silicatforschung ISC, Würzburg, Germany, ²VOCO GmbH, Cuxhaven, Germany

Objectives: ORMOCER®-based dental filling materials are successfully applied in dentistry, due to the combination of organic and inorganic polymer structures and their derived properties (e. g., low shrinkage, high abrasion-resistance). The objective of this investigation was to provide novel ORMOCER® matrix materials without any monomers important for avoiding allergic reactions and a low viscosity for achieving high filler loads.

Methods: Novel methacrylate functionalized alkoxysilanes were developed and converted into inorganic polycondensates by formation of a ≡Si-O-Si ≡structure. The polycondensates were isolated as liquid ORMOCER[®] resins (matrix materials). The viscosity was determined with a Bohlin Rheometer CVO10 and flexural strength, Youngs modulus and shrinkage of unfilled matrix materials were determined according to ISO 4049.

Results:

	Matrix materials	
	1	П
Viscosity (25 °C) [Pa×s]	3.6 – 5.5	18 – 24
Flexural strength [MPa]	64 (± 3)	97 (± 8)
Youngs	1222 (±	2149 (±
modulus [MPa]	35)	83)
Volume shrinkage [%]	5.1 – 5.4	4.1 – 4.6

The isolated resins show low viscosities of structure, without incorporation of dent a small amount of a dimethacrylate (≤1 reaction. According to the different structure moieties, the Youngs modulus can be adwith low shrinkage and promising values

Was ist bei der Erstellung des Abstracts zu beachten:

Titellänge: Max. 10 Wörter

Autor: Nennung jedes Autors inkl. Institution

in der Reihenfolge Vorname

(Anfangsbuchstabe) und Nachname

Abstract: Max. 300 Wörter (ohne Titel &

Autoren), max. 1 DIN A 4 Seite, Tabellen und Grafiken sind möglich. Sprache: Deutsch oder Englisch

Unterteilung in: - Ziel

- Methode

- Ergebniss

- Schlußfolgerung

Conclusion:

The achieved matrix materials without any conventional monomers are promising candidates for the realization of durable, aesthetic, and biocompatible dental composites by incorporation of functionalized hybrid fillers.